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Abstract

The purpose of this theoretical work is to present a stabilization problem of beam with shear deformations and
rotary inertia effects. A velocity feedback and particular polarization profiles of piezoelectric sensors and actuators
are introduced. The structure is described by partial differential equations with time-dependent coefficient including
transverse and rotary inertia terms, general deformation state with interlaminar shear strains. The first order deforma-
tion theory is utilized to investigate beam vibrations. The beam motion is described by the transverse displacement and
the slope. The almost sure stochastic stability criteria of the beam equilibrium are derived using the Liapunov direct
method. If the axial force is described by the stationary and continuous with probability one process the classic differ-
entiation rule can be applied to calculate the time-derivative of functional. The particular problem of beam stabilization
due to the Gaussian and harmonic forces is analyzed in details. The influence of the shear deformations, rotary inertia
effects and the gain factors on dynamic stability regions is shown.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the paper, theoretical fundamentals of stabilization of beam with shear deformations and rotary iner-
tia effects are presented. The piezoelectric layers are glued to the both sides of the beam compressed by
time-dependent axial forces. A velocity feedback and particular polarization profiles of piezoelectric sensors
and actuators are introduced. The structure is described by partial differential equations including
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transverse and rotary inertia terms, general deformation state with interlaminar shear strains. A viscous
model of external damping with the constant proportionality coefficient is assumed to describe a dissipation
of the structure energy both in the transverse and rotary motion. The first order deformation theory is uti-
lized to investigate beam vibrations. The beam motion is described by the transverse displacement. In order
to estimate deviations of solutions from the plane equilibrium state a scalar measure of distance equal to the
square root of the suitable functional is introduced. The almost sure stochastic stability criteria of the struc-
ture equilibrium are derived using the Liapunov direct method. If the axial force is described by the station-
ary and continuous with probability one process the classic differentiation rule can be applied to calculate
the time-derivative of functional. In order to find an exponential one-side estimation the calculus of vari-
ation is used. The associated Euler equations in the form of system of differential equations are solved ana-
lytically and the stabilization problem is reduced to transcendental algebraic inequality with respect the
exponent of estimation. The particular problem of beam stabilization due to the Gaussian and harmonic
forces is analyzed in details. The influence of the shear deformations, rotary inertia effects and the gain fac-
tors on dynamic instability regions is shown.

The problem of correction of shear on the transverse beam vibration goes back to the work of
Timoshenko in 1921 (see Timoshenko and Gere, 1961). The influence of shear deformation on the natural
frequencies of laminated rectangular plates was examined by Dave and Craig (1985). Shear deformation
effects on thermal buckling of cross-ply composite laminates were analyzed by Mannini (1997).
Timoshenko beam-bending solutions in terms of Euler–Bernoulli solutions were given by Wang (1995).
The influence of transverse shear on dynamic stability domains was studied by Pavlović et al. (2001).
The thermally induced parametric vibrations of laminated plates with shear effects due to the time-depen-
dent temperature with Gaussian and harmonic distributions were analyzed (Tylikowski, 2003). Analytical
solutions for the length and position of strain-induced patch actuators for the static adjustments of
Timoshenko�s beam deflection were presented by Ang et al. (2000). The effects of the feedback control gain
on the parametric vibrations of a beam with piezoelectric layers compressed by harmonic axial force were
examined by Chen et al. (2002).
2. Basic assumptions, definitions

Consider the beam of length l, width b, and thickness hb, loaded by axial time-dependent force with pie-
zoelectric layers mounted on each of two opposite sides. The beam is simply supported on both ends. The
piezoelectric layers are assumed to be bonded on the beam surfaces and the mechanical properties of the
bonding material are represented by the effective damping coefficient calculated from the rule of mixture.
The damping coefficient is a linear function of both the beam and bonding layer damping coefficients. It is
assumed that the transverse motion dominates the axial vibrations. The thickness of the actuator and the
sensor is denoted by ha and hs, respectively. Assuming a negligible stiffness of the piezolayer in comparison
with that of the beam and the changing width bs(X) of the sensor, the changing width ba(X) of the actuator
the influence of the piezoelectric actuator on the beam can be reduced to bending moment Mx distributed
along the actuator.

The transverse motion of the beam is described by the uniform equation with time-dependent coeffi-
cients. Its trivial solution w = 0 corresponds to the undisturbed state. The trivial solution is called stable
in Liapunov sense if the following definition is satisfied:
^

e>0

_
d>0

kwð0; .Þk < d )
^
t>0

kwðt; .Þk < e ð1Þ
where kÆk is a measure of distance of disturbed solution w from the equilibrium state. When the axial force
is a stochastic processes we call the trivial solution almost sure asymptotically stable if
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t!1

kwðt; .Þk ¼ 0
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¼ 1 ð2Þ
3. Sensor and actuator equations

Sensor electric displacement in direction perpendicular to the beam surface is given by
D3 ¼ �e31e1 ð3Þ

where e13 is the piezoelectric stress/charge coefficient, and e1 sensor strain. Expressing strains by the
beam curvatures and the distance from the neutral axis we integrate the electric displacement over the sen-
sor area
D3 ¼ �ds
ðhs þ hbÞEs

2

Z l

0

bsðX Þw;XX dX ð4Þ
where ds is the piezoelectric strain/charge coefficient of sensor. Finally, the sensor voltage is calculated using
the formula for a flat capacitor
V s ¼ �ds

ðhs þ hbÞEshs
2e33As

Z l

0

bsðX Þw;XX dX ð5Þ
where As is the effective sensor area and e33 is the permittivity coefficient. Using the velocity feedback con-
trol the voltage applied to the actuator is
V a ¼
Ka

C
dV s

dt
ð6Þ
The control bending moment can be expressed by the actuator stress ra, moment arm hb + ha, and the
cross-section area tab(x) of the actuator in the following way:
M e ¼ da31V aha
hb þ ha

2
baðX Þ ð7Þ
4. Closed loop dynamics equation of beam with rotational inertia effect

Consider the beam with rotational inertia effect loaded axially by a time-dependent force with piezoelec-
tric layers mounted on each of the two opposite sides of the beam. The piezoelectric layers are assumed to
be bonded on the beam surfaces and the mechanical properties of the bonding material are represented by
the effective damping coefficient. The sensing and actuating effects of piezoelectric layers are used to stabi-
lize both the free vibrations due to initial disturbances and parametric vibrations excited by the oscillating
axial force. Assuming the negligible stiffness of the sensor in comparison with that of the beam the influence
of the piezoelectric actuator on the beam is reduced to a bending moment Me distributed along the beam
qAw;TT þ 2qAb�w;T þ EJw;XXXX � EJqAw;XXTT � 2qIb�w;XXT þ ðF 0 þ F ðT ÞÞw;XX þM e
;XX ¼ 0

0 < X < l ð8Þ
where q—mass density, EJ—bending stiffness, A—cross-section area, b*—damping coefficient, F0—
constant component of axial force, F(T)—time-dependent component, Me—moment of electric origin,
w—beam transverse displacement. Introducing dimensionless coordinates
T ¼ tkt ¼ l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qA=EJ

p
t X ¼ xl ð9Þ
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and denotations
b ¼ b�kt e ¼ I=Al2 v ¼ w;t ð10Þ

we obtain the equation of beam motion with piezoelectric sensors and actuators
v;t þ 2bv� eðv;txx þ 2bv;xxÞ þ w;xxxx þ ðf0 þ f ðtÞÞw;xx þ me
;xx ¼ 0 ð11Þ
where the moment of piezoelectric origin is as follows:
me ¼ c�baðxÞ
Z 1

0

w;xxtbsðxÞdx ð12Þ
Due to the simply supported edges we have the following boundary conditions:
wð0; tÞ ¼ wð1; tÞ ¼ 0 w;xxð0; tÞ ¼ w;xxð1; tÞ ¼ 0 ð13Þ
5. Closed loop dynamics equation of beam with shear deformation effect

Consider the beam with shear deformation effect loaded axially by a time-dependent force with piezo-
electric layers mounted on each of the two opposite sides of the beam. Introducing the same assumptions
as in Section 4 the influence of the piezoelectric actuator on the beam is reduced to a bending moment Me

distributed along the beam.
Using the first order deformation theory based on Timoshenko approach we obtain the following equa-

tion of beam motion with neglecting the rotational inertia effect:
qAw;TT þ 2qAb�w;T þ EJw;XXXX � EJqAw;XXTT � 2b� EJqA
j

w;XXT þ ðF 0 þ F ðT ÞÞðw;XX � EJ=qw;XXXX Þ

þM e
;XX ¼ 0 0 < X < l ð14Þ
where q—mass density, EJ—bending stiffness, A—cross-section area, j—shear stiffness, b*—damping coef-
ficient, F0—constant component of axial force, F(T)—time-dependent component of axial force, Me—
moment of electric origin, u—beam transverse displacement. Introducing dimensionless coordinates
T ¼ ktt ¼ l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qA=EJ

p
t X ¼ xl ð15Þ
and denotations
b ¼ b�kt e ¼ EJ=jl2 v ¼ u;t ð16Þ
we obtain the equation of beam motion with piezoelectric sensors and actuators
v;t þ 2bv� eðv;txx þ 2bv;xxÞ þ w;xxxx þ ðf0 þ f ðtÞÞðw;xx � ew;xxxxÞ þ me
;xx ¼ 0 ð17Þ
Assuming simply supported edges we have the boundary conditions (13).
6. Stability analysis of closed loop system

6.1. Harmonic parametric excitation

Assume that the beam is subjected to the harmonic force
f ðtÞ ¼ a cos pt ð18Þ
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Consider the frequency p of parametric excitation in the range corresponding to the lowest resonance x.
Determine the polarization profiles of the sensor and actuator as follows:
Us
M ¼ aM sin px Ua

M ¼ bM sin px M ¼ 1 ð19Þ
Therefore, the stability problem is reduced to the following Mathieu equation:
d2u
dt2

þ 2c
du
dt

þ x2
0ð1þ l cos ptÞu ¼ 0 ð20Þ
where the effective damping coefficients c is defined as follows:
c ¼ bþ c�p4=4ð1þ ep2Þ ð21Þ
The free vibration frequency x0 and the excitation coefficient l have different forms for the beam with rota-
tional inertia effect
x2
0 ¼

p2ðp2 � f0Þ
1þ ep2

l ¼ a
p2 � f0

ð22Þ
and for the beam with shear deformation effect
x2
0 ¼ p2 p2

1þ ep2
� f0

� �

l ¼ a
p2

1þep2 � f0

ð23Þ
The meaning of parameter e is also different (cf. (10) and (16)). The main instability region is shown in Fig.
1.
Fig. 1. The first instability regions under deterministic harmonic in-plane forces.
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6.2. Stochastic parametric excitation of beam with rotational inertia effect

Consider the axial excitation in the form of physically realizable stochastic process with known proba-
bility distribution. In order to analyze stochastic instability we introduce Liapunov functional of the
form
V ¼ 1

2

Z 1

0

½v2 þ 2bvwþ 2b2w2 þ w2
;xx � f0w2

;x þ eðv2;x þ 2bv;xw;x þ 2b2w2
;xÞ�dx ð24Þ
If the classical condition for static buckling is fulfilled, the functional (22) satisfies positive-definiteness con-
dition, and the measure of distance can be chosen as the square root of the functional
kwð.; tÞk ¼
ffiffiffiffi
V

p
ð25Þ
If the trajectories of the forces are physically realizable ergodic processes the classical calculus is applied to
calculation of the time-derivative of Eq. (24). Upon differentiation with respect to time, substituting
dynamic equation (11) and using beam boundary conditions we obtain the time-derivative of functional
in the form
dV
dt

¼ �2kV þ 2U ð26Þ
where the auxiliary functional U is defined
U ¼
Z 1

0

b2vwþ b3w2 þ eðb2v;xu;x þ b3u2;xÞ �
f ðtÞ
2

ðbwþ vÞw;xx �
1

2
ðbwþ vÞM e

;xx

� �
dx ð27Þ
We look for a function v defined as a minimum over all admissible functions w and v of the ratio U/V
k ¼ min
w;v

U
V

ð28Þ
In order to derive the associated Euler equations we have to determine the polarization profiles of sensor
and actuators. We assume that widths correspond to the modal shape function of the chosen eigenfre-
quency xM
bsMðxÞ ¼ sinMpx

baMðxÞ ¼ sinMpx
ð29Þ
The choice of modal shape functions in the form (29) corresponds to the one-mode control. We calculate
d(U � kV) = 0 and obtain the Euler equations in the form (M = 1)
bðb� kÞðw� ew;xxÞ � kðv� ev;xxÞ �
f ðtÞ
2

w;xx þ
c�

2
p4 sin px

Z 1

0

ð2vþ bwÞ sin pxdx ¼ 0 ð30Þ

bðb� kÞ½ðv� ev;xxÞ þ 2bðw� ew;xxÞ� � f ðtÞ bw;xx þ
1

2
v;xx

� �
� kðw;xxxx � f0w;xxÞ þ

c�

2
p4 sin px

�
Z 1

0

v sin pxdx ¼ 0 ð31Þ
We look for solutions of equations (30) and (31) in the form satisfying conditions (13)
wðxÞ ¼ Sn sin npx ð32Þ

vðxÞ ¼ T n sin npx ð33Þ
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Substituting solutions (32) and (33) into system (30) and (31) we obtain the linear homogenous system of
equations with respect to Sn, Tn. Selecting the determinant of coefficients equal to zero gives the function kn.
Due to the orthogonality property of sine functions the function kn for n = 1 and n > 1 are calculated from
different formulae
Fig. 2.
e = I/(
k1 ¼
acþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2c2 þ að1þ ep2Þ½b2ð1þ ep2Þ þ p2f ðtÞ=2� bc�2

q
að1þ ep2Þ ð34Þ
where a = (1 + ep2)b2 + p2(p2 � f0) and c = c*p4/4
kn ¼
jb2ð1þ en2p2Þ þ f ðtÞn2p2=2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ en2p2Þ½b2ð1þ en2p2Þ þ n2p2ðn2p2 � f0Þ�
q n > 1 ð35Þ
The feedback gain factor of modal control is denoted by c. The function k is defined in the following way:
k ¼ min
n¼1;2;3;...

fkng ð36Þ
Using the property of function k in Eq. (26) leads to the first order differential inequality
dV
dt

6 �2ðb� kðtÞÞV ð37Þ
Solving inequality (37) and assuming the ergodicity of time-dependent component f(t) of axial force we
obtain the lower estimation of functional V(t) as follows:
V ðtÞ P V ð0Þ exp½ðEðkÞ � bÞt� ð38Þ

Thus, the equilibrium state of a beam with rotational inertia and with velocity feedback (the trivial solution
of Eq (11)) is almost sure asymptotically unstable if the damping coefficient b is smaller than the mathemat-
ical expectation of function k.
b 6 EðkÞ ð39Þ

The instability regions with one-mode control as functions of constant component of the axial force, load-
ing variance r, damping coefficient b and gain factor c are calculated numerically and shown in Fig. 2.
Effect of passive damping coefficient b on the boundaries of instability domain of beam with rotational inertia with different
Al2): c = 0—continuous line, c = 0.05—broken line.
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In order to improve the feedback stabilization effect the two-mode control can be applied. The element
k2 of sequence {kn} in Eq. (36) has to be modified in the following way:
Fig. 3.
mode c
k2 ¼
acþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2c2 þ að1þ 4ep2Þ½b2ð1þ 4ep2Þ þ 4p2f ðtÞ=2� bc�2

q
að1þ 4ep2Þ ð40Þ
where a = (1 + 4ep2)b2 + 4p2(4p2 � f0) and c = 4c*p4. The first element k1 is the same (Eq. (34)) and Eq.
(35) is applied for n > 2. From comparison shown in Fig. 3 we see that the double-mode control signifi-
cantly decreases instability regions. This influence is more pronounced for small parameter e, that corre-
sponds to smaller rotational inertia.

The instability domains do not change significantly when going from the Gaussian process to the har-
monic one for the wide range of parameters (cf. Fig. 4).

The effect of constant tensile force on instability regions is stabilizing especially with the control turn on
(Fig. 5).

6.3. Stochastic parametric excitation of beam with shear deformation effect

Consider the axial excitation in the form of physically realizable stochastic process with known proba-
bility distribution. In order to analyze stochastic instability of trivial solution of Eq. (17) we introduce
Liapunov functional of the form
V ¼ 1

2

Z 1

0

v2 þ 2bvwþ 2b2w2 þ w2
;xx � f0ðw2

;x þ ew2
;xxÞ þ eðv2;x þ 2bv;xw;x þ 2b2w2

;xÞ
h i

dx ð41Þ
We remember that the dimensionless parameter e, in contradistinction to Section 6.2, is defined as follows:
e = EJ/jl2. The functional (37) is positively definite if the Timoshenko�s condition is fulfilled
f0 < p2=ð1þ ep2Þ ð42Þ
Comparison of instability domains of beam with rotational inertia with different e = I/(Al2): no control—continuous line, one-
ontrol—broken line, double-mode control—dotted line.



Fig. 4. Comparison of instability domains of beam with rotational inertia with different e = I/(Al2): Gaussian process—continuous
line, harmonic process—broken line.

Fig. 5. Effect of static load component f0 on the instability domains with different feedback control gain: f0 = 0—continuous line,
f0 = �10—broken line.
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and a distance between the disturbed solution and the trivial one can be defined as the square root of the
functional (cf. Eq. (25)). As the classical differentiation principle can be applied, we obtain the differential of
the functional in the form
dV
dt

¼ �2bV þ 2U ð43Þ
where U is given by
U ¼
Z 1

0

b2vwþ b3w2 þ eðb2v;xw;x þ b3w2
;xÞ �

f ðtÞ
2

ðbwþ vÞðw;xx � ew;xxxxÞ �
1

2
ðbwþ vÞM e

;xx

� �
dx ð44Þ



Fig. 6. Effect of passive damping coefficient b on the boundaries of instability domain of beam with shear deformation with different
e = EJ/(jl2): c = 0—continuous line, c = 0.05—broken line.
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Applying the standard stability analysis (cf. Section 6.2) we have the lower estimation of functional U
Fig. 7.
one-m
U < kðtÞV ð45Þ

Using the variational calculus we find the function k(t). Finally, the almost sure instability of the trivial
solution w = 0 has the form (39) with function k defined as follows:
k ¼ min
n¼1;2;3;...

fkng

k1 ¼
acþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2c2 þ að1þ ep2Þ½b2ð1þ ep2Þ þ p2f ðtÞ=2� bc�2

q
að1þ ep2Þ ð46Þ
Comparison of instability domains of beam with shear deformation with different e = EI/(jl2): no control—continuous line,
ode control—broken line, double-mode control—dotted line.
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where a = b2 + p2(p2/(1 + ep2) � f0) and c = c*p4/(4(1 + ep2))
kn ¼
jb2 þ f ðtÞn2p2=2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ n2p2½n2p2=ð1þ en2p2Þ � f0�
q n > 1 ð47Þ
The stability regions as functions of the axial force variance r, damping coefficient b and gain factor c are
calculated numerically and shown in Fig. 6. The instability regions are situated over lines. The increase of
shear stiffness stabilizes significantly parametric vibrations. The double-mode control dramatically
decreases instability domains (Fig. 7).
7. Conclusions

The stabilization of vibrating beam with distributed piezoelectric sensor, actuator, and velocity feedback
has been studied. The stabilization of parametric vibrations needs sufficiently large active damping. Admis-
sible variances of loading depend strongly on the feedback gain factor. The saturation effect is observed for
large values of gain factor. Double-modes control decreases the almost sure instability regions. Increase of
constant components of in-plane forces decreases stability regions. Double-modes control enlarges the
almost sure stability regions. Increase of constant tensile component of in-plane force decreases instability
regions.
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